Musashi-2 (MSI2) supports TGF-β signaling and inhibits claudins to promote non-small cell lung cancer (NSCLC) metastasis.
نویسندگان
چکیده
Non-small cell lung cancer (NSCLC) has a 5-y survival rate of ∼16%, with most deaths associated with uncontrolled metastasis. We screened for stem cell identity-related genes preferentially expressed in a panel of cell lines with high versus low metastatic potential, derived from NSCLC tumors of Kras(LA1/+);P53(R172HΔG/+) (KP) mice. The Musashi-2 (MSI2) protein, a regulator of mRNA translation, was consistently elevated in metastasis-competent cell lines. MSI2 was overexpressed in 123 human NSCLC tumor specimens versus normal lung, whereas higher expression was associated with disease progression in an independent set of matched normal/primary tumor/lymph node specimens. Depletion of MSI2 in multiple independent metastatic murine and human NSCLC cell lines reduced invasion and metastatic potential, independent of an effect on proliferation. MSI2 depletion significantly induced expression of proteins associated with epithelial identity, including tight junction proteins [claudin 3 (CLDN3), claudin 5 (CLDN5), and claudin 7 (CLDN7)] and down-regulated direct translational targets associated with epithelial-mesenchymal transition, including the TGF-β receptor 1 (TGFβR1), the small mothers against decapentaplegic homolog 3 (SMAD3), and the zinc finger proteins SNAI1 (SNAIL) and SNAI2 (SLUG). Overexpression of TGFβRI reversed the loss of invasion associated with MSI2 depletion, whereas overexpression of CLDN7 inhibited MSI2-dependent invasion. Unexpectedly, MSI2 depletion reduced E-cadherin expression, reflecting a mixed epithelial-mesenchymal phenotype. Based on this work, we propose that MSI2 provides essential support for TGFβR1/SMAD3 signaling and contributes to invasive adenocarcinoma of the lung and may serve as a predictive biomarker of NSCLC aggressiveness.
منابع مشابه
MiR-96 induced non-small-cell lung cancer progression through competing endogenous RNA network and affecting EGFR signaling pathway
Objective(s): Non-small cell lung cancer (NSCLC) has become a serious global health problem in the 21st century, and tumor proliferation and metastasis are the leading causes of death in patients with lung cancer. The present study aimed to verify the function of miR-96 and miR-96 in relation to competing with endogenous RNA regulatory network in NSCLC progression inc...
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملTumor-associated macrophages promote tumor metastasis via the TGF-β/SOX9 axis in non-small cell lung cancer
Tumor-associated macrophages (TAMs), most of which display the immunosuppressive M2 phenotype, affect the tumor microenvironment and promote progression and metastasis in lung carcinoma. In this study, we analyzed clinical non-small cell lung cancer (NSCLC) samples and found that high densities of TAMs were associated with a poor prognosis in NSCLC patients. Moreover, the number of TAMs present...
متن کاملMusashi-2 controls cell fate, lineage bias, and TGF-β signaling in HSCs
Hematopoietic stem cells (HSCs) are maintained through the regulation of symmetric and asymmetric cell division. We report that conditional ablation of the RNA-binding protein Msi2 results in a failure of HSC maintenance and engraftment caused by a loss of quiescence and increased commitment divisions. Contrary to previous studies, we found that these phenotypes were independent of Numb. Global...
متن کاملSki prevents TGF-β-induced EMT and cell invasion by repressing SMAD-dependent signaling in non-small cell lung cancer.
Epithelial-mesenchymal transition (EMT) is a key event in cancer metastasis, which confers cancer cells with increased motility and invasiveness, and EMT is characterized by loss of epithelial marker E-cadherin and gain of mesenchymal marker N-cadherin. Transforming growth factor-β (TGF-β) signaling is a crucial inducer of EMT in various types of cancer. Ski is an important negative regulator o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 25 شماره
صفحات -
تاریخ انتشار 2016